
N90-13429

SPACECRAFT ATTITUDE DETERMINATION USING THE EARTH'S MAGNETIC FIELD

David G. Simpson

OAO Corporation, Greenbelt, Maryland 20770

A method is presented by which the attitude of a low.Earth orbiting space-

craft may be determined using a vector magnetometer, a digital Sun sensor,

and a mathematical model of the Earth's magnetic field. The method is

currently being implemented for the Solar Maximum Mission spacecraft (as

a backup for the failing star trackers) as a way to determine roll gyro

drift.
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I. INTRODUCTION

For centuries sailors have used the Earth's magnetic field to guide
their ships though the oceans of the world by means of the magnetic compass.
Today it is possible for spacecraft to navigate themselves in much the same
way, with the mariner's compass replaced by the modern magnetometer. In
this paper I describe how a vector magnetometer, in conjunction with a
digital Sun sensor, can be used to determine the attitude of a low-Earth
orbiting spacecraft.

This work was motivated by the failure of one of the two star trackers
on the Solar Maximum Mission (SMM) spacecraft in 1987. The complement of
attitude sensors on SMM provides only gyroscopes, two star trackers, and
vector magnetometers for determining the roll attitude. As currently
written, the on-board computer flight software uses the gyros to determine
the roll attitude of the spacecraft, with the star tracker used only to
calculate the roll gyro drift. The magnetometers are not currently used
for attitude determination on SMM.

Should the remaining star tracker fail, however, this would leave the
magnetometers as the only means of determining an absolute roll attitude,
since the gyros only measure changes in the attitude with respect to
inertial space. The work described in this paper is a result of an effort
to determine how SMM's magnetometers might be used as a replacement for the
remaining star tracker in the event that it fails.

The approach here will be to find the components of two vectors (the
eomagnetic induction and Sun vectors) in each of two coordinate frames
the spacecraft frame and a reference frame); we then solve for the

rotation matrix between the two frames to determine the spacecraft
attitude. These calculations will be performed by a computer on the ground
using data telemetered from the spacecraft; the ground computer will
calculate roll gyro drift coefficients which will be periodically uplinked
to the on-board computer. Calculating the gyro drift coefficients on the
ground will permit ground personnel to select data which was sampled
while the geomagnetic field was relatively quiet, thus giving the most
accurate results.

Section II of this paper describes how the Earth's magnetic field vector
at the spacecraft position can be calculated from a mathematical model.
Section III describes the calculation of the Sun vector, and Sections
IV and V describe how these two vectors may be combined with sensor data
to determine the spacecraft attitude. Section VI is a summary of the
paper, and Section VII is a short discussion of associated Legendre
functions.

256



II. MODELING THE GEOMAGNETIC FIELD

In order to determine the spacecraft attitude from the magnetometers,

one must first generate an accurate mathematical model of the Earth's

magnetic field. Ampere's law at the spacecraft position _ is (SI units):

Vx _(_) = _(_) + _(_-_) (1)
_t

where _(_) is the geomagnetic intensity at r, _(_) is the electric current

density, and _(_)/_ is the displacement current. Since there is no

current density at _ and the geomagnetic field is approximately static,

we may take J and _/@t to both be zero. Eq. (1) then becomes

: (2)

The constitutive relation for the magnetic induction-_ is

1 _(_) = _(-_) + _(-_) (3)
I-(o

-7 "2

where _. is the permeability of free space (4_ x 10 N A

magnetization, which is zero at r. Eq. (3) then becomes

), and _ is the

1 = (4)

Substituting Eq. (4) for _ into Eq. (2) we get

(s)

since the curl of any gradient is zero, this means that _ can be written as

the gradient of a magnetic scalar potential V: I

_(_) = -u. VV(_) (6)

It is conventional in geomagnetism to model the geomagnetic field by

expanding the magnetic scalar potential V(_) into a Laplace series of

spherical harmonics with real eigenfunctions: 2
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v(=,e,x)

k n

= _aE(_)n+l Z[g nm

n=l m=O

cos mX + hnm sin mX] pnm(cos e) (7)

where

r

0

a

pnm(cos e)

nm and h nmg

is the distance of the spacecraft from the center of the Earth;

is the co-elevation of the sub-satellite point (90" minus the north

latitude;

is the east longitude of the sub-satellite point;

is the radius of the Earth, taken to be 6371.2 km;

are the Gauss-normalized associated Legendre functions of
the first kind;

are the Gauss-normalized coefficients of the expansion.

The n=O terms in this expansion are absent because they would represent a

magnetic monopole component of the field; the n=1 terms represent the

dipole component, the n=2 terms represent the quadrupole component, etc.

The expansion coefficients gnm and hnm are found empirically; they are

updated every five years and published along with their time derivatives

(the seoulo_ vo_iation) by the International Association of Geomagnetism

and Aeronomy (IAGA). These published coefficients are Schmidt normalized

and may be used to calculate the geomagnetic scalar potential V(_) using

(7) if the Schmidt-normalized associated Legendre functions PnmEq. are

substituted for the Gauss-normalized functions pnm. Using Gauss normalization

will save about 7% in computer time, however, 3 so for convenience in

computer work, Gauss normalization will be used throughout this paper.

Table I shows the Gauss-normalized coefficients gnm and hnm for the

International Geomagnetic Reference Field (IGRF) 1985. These were

calculated from the Schmidt-normalized coefficients published by the

IAGA and can safely be extended to 1990 with the secular variation

coefficients in the last two columns.
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TABLE I. International Geomagnetic Reference Field, IGRF 1985.

Coefficients are C,:u88-normalized.

hnm gnm _nmqnm

n m _nT) (RT) (nT/yr) (nT/yr)

1 0 -29877 23.2

1 1 -1903 5497 10.0 -24.5

2 0 -3110 -20.6
2 1 5274 -3795 5.9 -19.9

2 2 1464 -268 6.1 -17.5

3 0 3250 12.8

3 1 -6761 -955 -14.1 16.2

3 2 2409 550 -1.2 4.5

3 3 660 -234 0.1 -8.5

4 0 4099 0.4

4 1 4317 1289 -3.3 21.0

4 2 1420 -978 -30.5 8.6

4 3 -891 142 -2.9 5.2

4 4 125 -220 -5.0 0.7

5 0 -1693 10.2

5 1 3619 478 1.0 1.0

5 2 1944 1137 -11.5 -I .5

5 3 -442 -729 -15.1 -0.5

5 4 -357 -166 0.2 1.3

5 5 -34 67 -0.1 O.0

6 0 751 20.2
6 1 1229 -302 -5.7 -7.6

6 2 747 1345 25.4 -16.4

6 3 -1853 687 6.0 -8.0

6 4 22 -273 0.0 -12.6

6 5 40 -9 2.1 -1.2

6 6 -69 13 0.8 -0.1

7 0 2011 5.4

7 1 -2164 -2909 -21.3 7.1

7 2 58 -753 -14.5 29.0
7 3 491 -20 16.4 22.5

7 4 -74 284 12.3 23.5
7 5 25 105 2.5 1.9

7 6 22 -51 -1.2 0.5

7 7 0 -4 -0.1 0.6

8 0 1056 35.2

8 1 402 469 0.0 6.7

8 2 0 -1178 16.8 -56.1
8 3 -456 207 16.6 4.1

8 4 -241 -668 -8.0 -21.4

8 5 30 163 -4.4 3.0

8 6 27 82 0.7 -5.5

8 7 10 -40 -1.3 -0.3

8 8 -4 -6 -0.5 0.8
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TABLE I (cont.)

n

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

I0

10

10

m

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

10

Inm hnm gnm _nm
nT) (nT) (nT/yr) (nT/yr)

475

1274

109

-996

507

-101

-17

53

5

-3

-722

-973

421

-826

-234

370

124

20

16

8

0

-2675

1738

747

-282

-202

157

75

-16

I

243

0

496

701

-296

0

-20

33

0

-4
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Whenthe coefficients in Table I are substituted into Eq. (7), we get
the geomagnetic scalar potential V(_); substituting this V(_) into Eq. (6)
yields the geomagnetic induction vector _(_) in a reference frame fixed

in the Earth (which will be referred to as the EB (Earth-based) frame).

The EB frame has its origin at the center of the Earth, its x axis pointing

out of the intersection of the equator with the prime meridian, its z axis

pointing out of the Earth's geographic north pole, and its y axis in the
^ A

x x z direction.

If we calculate the gradient in Eq. (6) in spherical polar coordinates,

A

= _ e + 1 _ eo + I _ ex (8)V@ a-'_ r _ ao r sin e aX

-+

the resulting spherical components of B may be used to easily calculate the

standard geomagnetic elements: 2

X = -B 0

Y = B_
Z : -B

r

H = (X2 + y2)½

v o Jzl
F = (X2 + y2 + Z2)½

D = arctan (Y/X)

I = arctan (Z/H)

(Northward component)

(Eastward component)

(Downward component)

(Horizontal intensity)

(Vertical intensity)

(Total intensity)

(Magnetic declination)

(Magnetic inclination)

A computer program which calculates _(_) can then be checked by comparing

the geomagnetic elements it calculates with the elements found in charts

and tables in the literature, s

For spacecraft attitude determination, we will need to know the

components of the modeled geomagnetic induction vector_('_) in the

#eooentrio inertial (GCI) reference frame rather than the EB frame.

The GCI frame is fixed with respect to the stars and has its origin at the

Earth's center, its x axis toward the vernal equinox, its z axis out of
^ A

the Earth's geographic north pole, and its y axis in the z x x direction.
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The GCl frame differs from the EB frame only by a rotation about their

common z axis. Specifically, in cartesian coordinates

BGC I = R BEB (9)

where the rotation matrix R is given by

R

I cos x sin y 0
-sin y cos y 0

0 0 1

(IO)

and where y is the Greenwich hour angle of the vernal equinox, which is

equal to the sidereal time at Greenwich (GST) and is given by6

y o LST - (x/15") (11)

where LST is the local sidereal time and _ the east longitude of any

convenient point on the Earth's surface. An expression for y which is

often more convenient is6

y : 99".6910 + 36000".7689T + O'.O004T 2 + UTC (12)

where T is the time (in Julian centuries of 36525 days) since 1900 and

UTC is Coordinated Universal Time expressed in degrees.

Alternatively, if we work in spherical polar coordinates, Eqs. (9) and

(10) may be replaced with

B = B
rGCI fEB

BeGCI = BeE B

BXGCI = BXE B
- y

(13)
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III. SUN VECTOR CALCULATION

The geomagnetic induction vector _(_) modeled in Section II is by itself

insufficient to determine the spacecraft attitude, since if the spacecraft

is rotated about the _ vector it will still yield the same components of

in a reference frame fixed in the spacecraft; hence one degree of freedom

is left unspecified. 7 It is therefore necessary to know the components of

one more vector (not parallel to _(_)) in order to specify the spacecraft

attitude completely. For this discussion we choose the Earth-to-Sun vector
A

(or simply the "Sun vector") S, and in this section I discuss how to

calculate the components of S in the GCI frame. (The cartesian GCl compon-

ents of S will be used along with the cartesian GCI components of B from

Section II to determine the spacecraft attitude in Sections IV and V.) The
A

Sun unit vector S is given in cartesian GCl coordinates approximately by

(ignoring the small corrections for parallax and light aberration) s

FCOS L ]
S(t) = |s!n L COS _ (14)

LSln L sin

where L(t) is the mean longitude of the Sun and _ is the mean inclination

of the ecliptic from the Earth's equatorial plane.

The mean longitude of the Sun L(t) may be calculated from B

L(t) = L(t ) + M(t) + 2e sin M(t) + St
0

(15)

where t is a reference time, e is the eccentricity of the Earth's orbit
0

(e = 0.016722), M(t) is the mean anomaly of the Sun, and B is defined by

B = 360" 360" (16)

Tsy Tay

7

where Tsy is the length of the sidereal year (3.1558149548 x 710 seconds)

and Tay is the length of the anomalistic year (3.1558433 x 10 seconds).

The mean anomaly of the Sun M(t) is given by s

M(t) = M(t ) + 360"(t - _) (17)
0 T ay
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where o is the time it takes light to travel from the Sun to the Earth,

about 499 seconds.

Finally, the mean inclination of the ecliptic _ is given byB

= 23"27' 8.26" - 46.845" T (18)

where T is the time in Julian centuries since 1900.

IV. GENERAL ATTITUDE DETERMINATION

Knowing the cartesian components of the geomagnetic induction unit vector
_). ^

B and the Sun unit vector S in the GCI reference frame (as described in

Sections II and Ill), we can now determine the spacecraft attitude if we

also know the components of these two vectors in the spacecraft (SC)

reference frame (i.e. along the roll (x), pitch (y), and yaw (z) axes).

The essence of the problem of determining the spacecraft attitude is then

this: we are given the components of two vectors in each of these two

reference frames which have a common origin, and we must solve for the

rotation matrix between the two frames. There are several ways of doing

this; I will describe here one of the simplest methods, known as the

algebraic method. 9 Let _ be some vector whose components we wish to

transform from the GCI reference frame to the SC frame. The two sets of

components are related by

CSC : A CGCI (19)

where CSC and CGCI are column vectors containing the SC and GCI components,

respectively, and A is the rotation matrix we wish to solve for. Formally,

we could solve this equation of A by post-multiplying both sides by the

inverse of the matrix _GCI:

A = _SC CGCI

Unfortunately, CGCI is not a square matrix, so we cannot take its inverse

directly (without a somewhat messy diversion into pseudo-inverses).
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In the algebraic method, we use the two known vectors B and S to

oonstz_et an orthogonal triad of vectors (a, b, and c) in each reference

frame (SC and GCI). (This will work only if B and S are not parallel.)

We then define a matrix M for each frame which has the vectors a, b, and c

as its columns; the columns of this matrix will transform from GCI to SC

coordinates just like the vector _ above, and we will be able to take its

inverse (since it will be a square matrix), thus allowing us to solve for

the rotation matrix A.
A A

Specifically, let us define the vectors a, b, and c in the GCI and SC

reference frames as follows:

GCI Frame SC Frame

^ ^ A A

aGC I = SGC I aSC = SSC

" SGCl x BGCI " SSC x BSC (20)

bGcl : ISGcl×  acll bsc : ISsc× fiSCl
^ A ^ _. ^

cGC I : aGC I x bGc I Csc : asc x bsc

where :

GCI

GCI

_SC

_SC

is the geomagnetic induction unit vector in GCI cartesian

coordinates, calculated as in Section II.

is the Sun unit vector in GCI cartesian coordinates, calculated

as in Section Ill.

is the geomagnetic induction unit vector in SC cartesian

coordinates, from the spacecraft magnetometers.

is the Sun unit vector in SC cartesian coordinates, from the

spacecraft digital Sun sensor.
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We now construct two 3x3 square matrices MGC I and Msc whose columns are
A

the cartesian components of a, b, and c:

MGCI

MSC

= [aGCI [ _)GCI ( cGCI]

: [a c L  cI sc ]
(21)

Since the rotation matrix A rotates column vectors from the GCI to the SC

reference frame, it will also rotate each column of MGC I into the corre-

sponding column of MSC:

MSC = A MGC I

Since MGC I is a square matrix, we can now solve for the rotation matrix A

by post-multiplying both sides by the inverse of MGCI:

A = MSC MGCI-I

Furthermore, since MGC I was defined to be an orthogonal matrix, its inverse

is equal to its transpose and so

T
A : MSC MGCI (22)

The matrix A given by Eq. (22) rotates any vector from the GCl to the

spacecraft reference frame and thus determines the spacecraft attitude.
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V. SMM ROLL ATTITUDE DETERMINATION

On SMM, the roll, pitch, and yaw angles are measured with respect to

the somewhat whimsically named "SUN" reference frame, defined by the three

orthonormal vectors S, U, and N:

is the Sun unit vector, calculated as in Section III.

(U points out of the east limb of the Sun,
alonq the solar equator.)

= (N is P projected onto the plane normal to the
line of sight.)

where P is the solar spin axis unit vector. In order to determine the

spacecraft attitude from the magnetometers and the Fine Pointing Sun

Sensor (FPSS), we will need to know the components of the vectors S, U,

and N in the GCI reference frame.

We first need to calculate the cartesian components of the solar spin

axis unit vector P in the GCI frame. We begin by working in the eeliptio

(ECL) frame, defined by the unit vectors xEC L, YECL' and ZECL:

(23)

XECL

YECL

ZECL

points in the direction of the vernal equinox;
A A

points in the direction of zEC L x XECL;

points toward the ecliptic north pole.

The vector P in the ecliptic frame has cartesian components s

I sin R sin i 1
PECL = -cos _ .sin i

cos i
(24)

where _ is the longitude of the ascending node of the solar equator on the

ecliptic, given byB

: 73" 40' + 50" 25' A (25)
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where A is the time in years since 1850; i is the inclination of the solar

equator to the ecliptic:

i = 7" 15' (26)

The ecliptic and GCl reference frames differ only by a rotation of

magnitude -_ about their common x axis, where E is the inclination of the

ecliptic (Eq. (18)). Hence the GCl cartesian components of P are

A

PGCI

"I

I o o l] ^0 cos c -sin PECL
0 sin c cos

(27)

Having found the cartesian components of the solar spin axis unit vector

in the GCl frame, and knowing the components of S from section III, we may
A

now use Eq. (23) to determine the cartesian components of the U and

vectors in the GCI frame; these will be used in Eq. (29) below to determine

the SMM roll attitude.

It is especially convenient to determine SMM's roll angle p when the

spacecraft's FPSS is pointed at Sun center (so that the pitch and yaw

angles are zero). In this case the x axis of the spacecraft reference

frame (the roll axis) will coincide with the _ vector of the SUN frame.

The two reference frames will then differ only by a rotation about their
A

common x-S axis (Fig. I). The roll angle p is then given by s

p : - (28)
I 2

where @ is calculated from the magnetic field model and solar ephemeris
1

(Sections II-V):

_P1

-I
: tan

A

-BGcl " UGCI
A

BGCI " NGCI

(29)
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Fig. 1. Determination of SMM roll attitude. This view is looking

from the Sun down onto the SMM top face plate. (After ES].)
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and @ is found from magnetometer data:
2

2

-I "iImagpitch (30)
tan

_[magyaw

Substituting Eqs. (29) and (30) into Eq. (28) then determines the SMM roll

attitude. Note that we do not require any FPSS data in this case; the Sun

vector SSC was tacitly assumed to lie along the S axis of the SUN frame

since the FPSS is pointed at Sun center.

VI. SUMMARY

Two methods for spacecraft attitude determination using the Earth's

magnetic field have been presented: the algebz_ie method for spacecraft

in general (Section IV), and a simpler method specific to SMM (Section V).

Both methods compare the Earth's magnetic field as calculated by a

mathematical model (Eq. (7)) with magnetometer measurements; in addition,

the Sun vector calculated by Eq. (14) and measured with a digital Sun

sensor is used to completely specify the spacecraft attitude.
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VII. APPENDIX: ASSOCIATED LEGENDRE FUNCTIONS

The associated Legendre functions of the first kind form a complete

orthogonal set of functions over the interval 0 : [0, _]; it is this

property which makes them a useful basis in which to expand the geomagnetic

scalar potential V(_).

Although a variety of normalization conventions for the associated

Legendre functions are in common use, the three most common are the so-

called Neumann, Schmidt, and Gauss normalization conventions. Neumann

normalization is the convention most often found in mathematics text-

books1. °-12 The geomagnetic coefficients g and h given in the literature

are usually defined for the Schmidt-normalized associated Legendre

functions; Schmidt normalization has the advantage that the normalization

constants are independent of m (for m _ O) for any given n, so the

relative strengths of the different terms can be easily judged. Gauss

normalization is useful because it saves about 7% in computation time

on a computer3; the g and h coefficients in this paper have been converted

to Gauss normalization for ready use in computer work.

The various normalization conventions are defined as follows:

Neumann normalization (Pnm) :

jo _ 2 (n+m)!
Pnm(COS 8) Pcm(COS e) sin 0 dO : _

Schmidt normalization (Pn m):

/0 n 2 (2 - 6mO)
Pnm(cos B) P_m(cos e) sin 0 de = 2n +'_ .....

Gauss normalization (pnm):

_ pnm(cos o) P_m(cos o)
sin 0 do =

n£

6
nc

2 (n-m)! (n+m)!
(2n+1)[(2n-l)!i] _ _n_
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One may easily calculate the conversion factors for converting between

Schmidt and Gauss normalizations by simply taking the square root of the

quotient of the respective normalization constants. In particular, if

the conversion factors Snm are defined by 13

= pnmPnm Snm

then

Snm
I 2(2_6m0) ] ½

2n + _ 6n_

2(n-m)! (n+m)!

(2n+1)[(2n-1)!!] z 6n_

or

(2-6m0) (n-m)! ] ½ (2n-i)!!Snm : (n+m)! " (n-m)!

Table II lists the explicit values of these conversion factors up to n=12.

To convert a table of Schmidt-normalized coefficients gnm and hnm (such as

those usually found in the literature) from Schmidt to Gauss normalization,

use

nm
g = Snm gnm

hnm = Snm hnm

and analogous expressions for the secular variation coefficients.
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TABLE II. Conversion factors Snm between Schmidt- and Gauss- normalized

associated Legendre functions of the first kind.

n m S
_ nm n m

I 0 I 9 0

1 1 i 9 I
2 0 3/2 9 2

2 I /3 9 3

2 2 (1/2) /3 9 4

3 0 5/2 9 5

3 I (514) /6 9 6

3 2 (I/2) ,/,15 9 7

3 3 (I/4) ,/,10 9 8

4 0 35/8 9 9

4 1 (7/4) '/'10 I0 0

4 2 (7/4) /5 10 I

4 3 (1/4) /70 10 2

4 4 (1/8) '/'35 10 3

5 0 63/8 10 4

5 i (2118),/,15 I0 5
5 2 (3/4) '/'/'105 10 6
5 3 (9/16) '/'70 10 7

5 4 (3/8) '/'35 10 8

5 5 (3/16) '/'14 10 9

6 0 231/16 10 10

6 I (33/8) /21 11 0

6 2 (33/32) '/'210 11 I

6 3 (11116)/210 11 2
6 4 (33/16) '/'7 11 3

6 5 (3/16) '/'154 11 4

6 6 (I/32) '/'462 11 5

7 0 429/16 11 6

7 i (429/32) '/'7 11 7

7 2 (143/32) /42 11 8

7 3 (143/32) /21 11 9

7 4 (13/16) /231 11 10

7 5 (13/32) '/'231 11 11

7 6 (i/32) /6006 12 0

7 7 (i/32) /429 12 i
8 0 6435/128 12 2

8 i 2145/32 12 3

8 2 (429/64) '/'70 12 4

8 3 (39/32) '/'1155 12 5

8 4 (195/64) /77 12 6

8 5 (15/32) '/'1001 12 7

8 6 (15/64) '/'858 12 8

8 7 (3/32) '/'715 12 9

8 8 (3/128) '/'715 12 10

12 11

12 12

Sn__m

12155/128
(7293/128) /5
(663/64) ,/110

(221/128) /2310
(51/64) '/'5005
(255/128) /286
(17/64) ,/'4290
(51/256) '/'1430
(3/128) ,/12155
(I/256) /24310

46189/256
(4199/128) '/'55

(4199/256) '/'165
(323/128) '/'4290
(323/128) '/'2145

(323/128) '/'858
(323/512) '/'4290
(19/256) '/'72930

(19/256) /12155

(I/256) W461890

(I/512) /92378

88179/256

(29393/512) /66

(2261/256) /2145

(969/512) /30030

(969/128) /1001

(6783/512) ,/,143

(399/512) '/'14586

(133/512) '/'36465

(7/256) '/'692835

(21/512) '/'46189

(I/512) '/'1939938

(1/512) '/'88179

676039/1024

(52003/512) '/'78

(7429/512) '/'3003

(7429/512) /2002

(22287/2048) '/'2002

(1311/512) '/'17017

(3059/1024) /4862
(161/512) /138567

(161/1024) /138567

(23/512) '/'323323

(23/1024) '/'/'176358

(I/512) '/'2028117

(i/2048) '/'1352078
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